javaee论坛

普通会员

225648

帖子

344

回复

358

积分

楼主
发表于 2019-11-03 15:37:16 | 查看: 244 | 回复: 2

可能很多人在大一的时候,就已经接触了递归了,不过,我敢保证很多人初学者刚开始接触递归的时候,是一脸懵逼的,我当初也是,给我的感觉就是,递归太神奇了!

可能也有一大部分人知道递归,也能看的懂递归,但在实际做题过程中,却不知道怎么使用,有时候还容易被递归给搞晕。也有好几个人来问我有没有快速掌握递归的捷径啊。说实话,哪来那么多捷径啊,不过,我还是想写一篇文章,谈谈我的一些经验,或许,能够给你带来一些帮助。

为了兼顾初学者,我会从最简单的题讲起!

递归的三大要素

第一要素:明确你这个函数想要干什么

对于递归,我觉得很重要的一个事就是,这个函数的功能是什么,他要完成什么样的一件事,而这个,是完全由你自己来定义的。也就是说,我们先不管函数里面的代码什么,而是要先明白,你这个函数是要用来干什么。

例如,我定义了一个函数

//算n的阶乘(假设n不为0)intf(intn){}

这个函数的功能是算n的阶乘。好了,我们已经定义了一个函数,并且定义了它的功能是什么,接下来我们看第二要素。

第二要素:寻找递归结束条件

所谓递归,就是会在函数内部代码中,调用这个函数本身,所以,我们必须要找出递归的结束条件,不然的话,会一直调用自己,进入无底洞。也就是说,我们需要找出当参数为啥时,递归结束,之后直接把结果返回,请注意,这个时候我们必须能根据这个参数的值,能够直接知道函数的结果是什么。

例如,上面那个例子,当n=1时,那你应该能够直接知道f(n)是啥吧?此时,f(1)=1。完善我们函数内部的代码,把第二要素加进代码里面,如下

//算n的阶乘(假设n不为0)intf(intn){if(n==1){return1;}}

有人可能会说,当n=2时,那我们可以直接知道f(n)等于多少啊,那我可以把n=2作为递归的结束条件吗?

当然可以,只要你觉得参数是什么时,你能够直接知道函数的结果,那么你就可以把这个参数作为结束的条件,所以下面这段代码也是可以的。

//算n的阶乘(假设n>=2)intf(intn){if(n==2){return2;}}

注意我代码里面写的注释,假设n>=2,因为如果n=1时,会被漏掉,当n<=2时,f(n)=n,所以为了更加严谨,我们可以写成这样:

//算n的阶乘(假设n不为0)intf(intn){if(n<=2){returnn;}}

第三要素:找出函数的等价关系式

第三要素就是,我们要不断缩小参数的范围,缩小之后,我们可以通过一些辅助的变量或者操作,使原函数的结果不变。

例如,f(n)这个范围比较大,我们可以让f(n)=n*f(n-1)。这样,范围就由n变成了n-1了,范围变小了,并且为了原函数f(n)不变,我们需要让f(n-1)乘以n。

说白了,就是要找到原函数的一个等价关系式,f(n)的等价关系式为n*f(n-1),即

f(n)=n*f(n-1)。

这个等价关系式的寻找,可以说是最难的一步了,如果你不大懂也没关系,因为你不是天才,你还需要多接触几道题,我会在接下来的文章中,找10道递归题,让你慢慢熟悉起来。

找出了这个等价,继续完善我们的代码,我们把这个等价式写进函数里。如下:

//算n的阶乘(假设n不为0)intf(intn){if(n<=2){returnn;}//把f(n)的等价操作写进去returnf(n-1)*n;}

至此,递归三要素已经都写进代码里了,所以这个f(n)功能的内部代码我们已经写好了。

这就是递归最重要的三要素,每次做递归的时候,你就强迫自己试着去寻找这三个要素。

还是不懂?没关系,我再按照这个模式讲一些题。

有些有点小基础的可能觉得我写的太简单了,没耐心看?少侠,请继续看,我下面还会讲如何优化递归。当然,大佬请随意,可以直接拉动最下面留言给我一些建议,万分感谢!

案例1:斐波那契数列

斐波那契数列的是这样一个数列:1、1、2、3、5、8、13、21、34…,即第一项f(1)=1,第二项f(2)=1…,第n项目为f(n)=f(n-1)+f(n-2)。求第n项的值是多少。

1、第一递归函数功能

假设f(n)的功能是求第n项的值,代码如下:

intf(intn){}

2、找出递归结束的条件

显然,当n=1或者n=2,我们可以轻易着知道结果f(1)=f(2)=n。所以递归结束条件可以为n<=2。代码如下:

intf(intn){if(n<=2){returnn;}}

第三要素:找出函数的等价关系式

题目已经把等价关系式给我们了,所以我们很容易就能够知道f(n)=f(n-1)+f(n-2)。我说过,等价关系式是最难找的一个,而这个题目却把关系式给我们了,这也太容易,好吧,我这是为了兼顾几乎零基础的读者。

所以最终代码如下:

intf(intn){//1.先写递归结束条件if(n<=2){returnn;}//2.接着写等价关系式returnf(n-1)+f(n-2);}

搞定,是不是很简单?

零基础的可能还是不大懂,没关系,之后慢慢按照这个模式练习!好吧,有大佬可能在吐槽太简单了。

案例2:小青蛙跳台阶

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

1、第一递归函数功能

假设f(n)的功能是求青蛙跳上一个n级的台阶总共有多少种跳法,代码如下:

intf(intn){}

2、找出递归结束的条件

我说了,求递归结束的条件,你直接把n压缩到很小很小就行了,因为n越小,我们就越容易直观着算出f(n)的多少,所以当n=1时,你知道f(1)为多少吧?够直观吧?即f(1)=1。代码如下:

intf(intn){if(n==1){return1;}}

第三要素:找出函数的等价关系式

每次跳的时候,小青蛙可以跳一个台阶,也可以跳两个台阶,也就是说,每次跳的时候,小青蛙有两种跳法。

第一种跳法:第一次我跳了一个台阶,那么还剩下n-1个台阶还没跳,剩下的n-1个台阶的跳法有f(n-1)种。

第二种跳法:第一次跳了两个台阶,那么还剩下n-2个台阶还没,剩下的n-2个台阶的跳法有f(n-2)种。

所以,小青蛙的全部跳法就是这两种跳法之和了,即f(n)=f(n-1)+f(n-2)。至此,等价关系式就求出来了。于是写出代码:

intf(intn){if(n==1){return1;}ruturnf(n-1)+f(n-2);}

大家觉得上面的代码对不对?

答是不大对,当n=2时,显然会有f(2)=f(1)+f(0)。我们知道,f(0)=0,按道理是递归结束,不用继续往下调用的,但我们上面的代码逻辑中,会继续调用f(0)=f(-1)+f(-2)。这会导致无限调用,进入死循环。

这也是我要和你们说的,关于递归结束条件是否够严谨问题,有很多人在使用递归的时候,由于结束条件不够严谨,导致出现死循环。也就是说,当我们在第二步找出了一个递归结束条件的时候,可以把结束条件写进代码,然后进行第三步,但是请注意,当我们第三步找出等价函数之后,还得再返回去第二步,根据第三步函数的调用关系,会不会出现一些漏掉的结束条件。就像上面,f(n-2)这个函数的调用,有可能出现f(0)的情况,导致死循环,所以我们把它补上。代码如下:

intf(intn){//f(0)=0,f(1)=1,f(2)=2等价于n<=2时,f(n)=n。if(n<=2){returnn;}ruturnf(n-1)+f(n-2);}

有人可能会说,我不知道我的结束条件有没有漏掉怎么办?别怕,多练几道就知道怎么办了。

看到这里有人可能要吐槽了,这两道题也太容易了吧??能不能被这么敷衍。少侠,别走啊,下面出道难一点的。

下面其实也不难了,就比上面的题目难一点点而已,特别是第三步等价的寻找。

案例3:反转单链表。

反转单链表。例如链表为:1->2->3->4。反转后为4->3->2->1

链表的节点定义如下:

classNode{intdate;Nodenext;}

虽然是Java语言,但就算你没学过Java,我觉得也是影响不大,能看懂。

还是老套路,三要素一步一步来。

1、定义递归函数功能

假设函数reverseList(head)的功能是反转但链表,其中head表示链表的头节点。代码如下:

NodereverseList(Nodehead){}

2.寻找结束条件

当链表只有一个节点,或者如果是空表的话,你应该知道结果吧?直接啥也不用干,直接把head返回呗。代码如下:

NodereverseList(Nodehead){if(head==null||head.next==null){returnhead;}}

3.寻找等价关系

这个的等价关系不像n是个数值那样,比较容易寻找。但是我告诉你,它的等价条件中,一定是范围不断在缩小,对于链表来说,就是链表的节点个数不断在变小,所以,如果你实在找不出,你就先对reverseList(head.next)递归走一遍,看看结果是咋样的。例如链表节点如下

我们就缩小范围,先对2->3->4递归下试试,即代码如下

NodereverseList(Nodehead){if(head==null||head.next==null){returnhead;}//我们先把递归的结果保存起来,先不返回,因为我们还不清楚这样递归是对还是错。,NodenewList=reverseList(head.next);}

我们在第一步的时候,就已经定义了reverseList函数的功能可以把一个单链表反转,所以,我们对2->3->4反转之后的结果应该是这样:

我们把2->3->4递归成4->3->2。不过,1这个节点我们并没有去碰它,所以1的next节点仍然是连接这2。

接下来呢?该怎么办?

其实,接下来就简单了,我们接下来只需要把节点2的next指向1,然后把1的next指向null,不就行了?,即通过改变newList链表之后的结果如下:

也就是说,reverseList(head)等价于**reverseList(head.next)**+改变一下1,2两个节点的指向。好了,等价关系找出来了,代码如下(有详细的解释):

//用递归的方法反转链表publicstaticNodereverseList2(Nodehead){//1.递归结束条件if(head==null||head.next==null){returnhead;}//递归反转子链表NodenewList=reverseList2(head.next);//改变1,2节点的指向。//通过head.next获取节点2Nodet1=head.next;//让2的next指向2t1.next=head;//1的next指向null.head.next=null;//把调整之后的链表返回。returnnewList;}

这道题的第三步看的很懵?正常,因为你做的太少了,可能没有想到还可以这样,多练几道就可以了。但是,我希望通过这三道题,给了你以后用递归做题时的一些思路,你以后做题可以按照我这个模式去想。通过一篇文章是不可能掌握递归的,还得多练,我相信,只要你认真看我的这篇文章,多看几次,一定能找到一些思路!!

我已经强调了好多次,多练几道了,所以呢,后面我也会找大概10道递归的练习题供大家学习,不过,我找的可能会有一定的难度。不会像今天这样,比较简单,所以呢,初学者还得自己多去找题练练,相信我,掌握了递归,你的思维抽象能力会更强!

接下来我讲讲有关递归的一些优化。

有关递归的一些优化思路

1.考虑是否重复计算

告诉你吧,如果你使用递归的时候不进行优化,是有非常非常非常多的子问题被重复计算的。

啥是子问题?f(n-1),f(n-2)…就是f(n)的子问题了。

例如对于案例2那道题,f(n)=f(n-1)+f(n-2)。递归调用的状态图如下:

看到没有,递归计算的时候,重复计算了两次f(5),五次f(4)。。。。这是非常恐怖的,n越大,重复计算的就越多,所以我们必须进行优化。

如何优化?一般我们可以把我们计算的结果保证起来,例如把f(4)的计算结果保证起来,当再次要计算f(4)的时候,我们先判断一下,之前是否计算过,如果计算过,直接把f(4)的结果取出来就可以了,没有计算过的话,再递归计算。

用什么保存呢?可以用数组或者HashMap保存,我们用数组来保存把,把n作为我们的数组下标,f(n)作为值,例如arr[n]=f(n)。f(n)还没有计算过的时候,我们让arr[n]等于一个特殊值,例如arr[n]=-1。

当我们要判断的时候,如果arr[n]=-1,则证明f(n)没有计算过,否则,f(n)就已经计算过了,且f(n)=arr[n]。直接把值取出来就行了。代码如下:

//我们实现假定arr数组已经初始化好的了。intf(intn){if(n<=1){returnn;}//先判断有没计算过if(arr[n]!=-1){//计算过,直接返回returnarr[n];}else{//没有计算过,递归计算,并且把结果保存到arr数组里arr[n]=f(n-1)+f(n-1);reutrnarr[n];}}

也就是说,使用递归的时候,必要须要考虑有没有重复计算,如果重复计算了,一定要把计算过的状态保存起来。

2.考虑是否可以自底向上

对于递归的问题,我们一般都是从上往下递归的,直到递归到最底,再一层一层着把值返回。

不过,有时候当n比较大的时候,例如当n=10000时,那么必须要往下递归10000层直到n<=1才将结果慢慢返回,如果n太大的话,可能栈空间会不够用。

对于这种情况,其实我们是可以考虑自底向上的做法的。例如我知道

f(1)=1;

f(2)=2;

那么我们就可以推出f(3)=f(2)+f(1)=3。从而可以推出f(4),f(5)等直到f(n)。因此,我们可以考虑使用自底向上的方法来取代递归,代码如下:

publicintf(intn){if(n<=2)returnn;intf1=1;intf2=2;intsum=0;for(inti=3;i<=n;i++){sum=f1+f2;f1=f2;f2=sum;}returnsum;}

这种方法,其实也被称之为递推。

最后总结

其实,递归不一定总是从上往下,也是有很多是从下往上的,例如n=1开始,一直递归到n=1000,例如一些排序组合。对于这种从下往上的,也是有对应的优化技巧,不过,我就先不写了,后面再慢慢写。这篇文章写了很久了,脖子有点受不了了,,,,颈椎病?害怕。。。。

说实话,对于递归这种比较抽象的思想,要把他讲明白,特别是讲给初学者听,还是挺难的,这也是我这篇文章用了很长时间的原因,不过,只要能让你们看完,有所收获,我觉得值得!有些人可能觉得讲的有点简单,没事,我后面会找一些不怎么简单的题。最后如果觉得不错,还请给我转发or点赞一波!

推荐阅读

动画:面试如何轻松手写链表?别再翻了,面试二叉树看这11个就够了~

看完有收获?那么希望老铁别吝啬你的三连击哦

1、点赞,可以让更多的人看到这篇文章2、关注我的原创微信公众号『苦逼的码农』,第一时间阅读我的文章。公众号后台回复『电子书』,还送你一份电子书大礼包哦。3、也欢迎关注我的博客哦。

作者简洁

作者:帅地,一位热爱、认真写作的小伙,目前维护原创公众号:『苦逼的码农』,以写了150多篇文章,专注于写算法、计算机基础知识等提升你内功的文章,期待你的关注。转载说明:务必注明来源(注明:来源于公众号:苦逼的码农,作者:帅地)


普通会员

0

帖子

348

回复

352

积分
沙发
发表于 2023-12-02 10:19:58

看看

普通会员

0

帖子

313

回复

322

积分
板凳
发表于 2024-04-20 13:57:43

楼主听话,快到碗里来!

您需要登录后才可以回帖 登录 | 立即注册

触屏版| 电脑版

技术支持 历史网 V2.0 © 2016-2017